Born, L., Gresser, T., Milwich, M.: DE 10 2018 108 745 A1 - Faserverbundbauteil, Hybridbauteil und Verfahren zum Herstellen eines Faserverbundbauteils, (2019).
BibTeX
Born, L., Gresser, T., Milwich, M.: EP 3 552 807 A1 - FASERVERBUNDBAUTEIL, HYBRIDBAUTEIL UND VERFAHREN ZUM HERSTELLEN EINES FASERVERBUNDBAUTEILS, (2019).
BibTeX
Born, L., Körner, A., Mader, A., Schieber, G., Milwich, M., Knippers, J., Gresser, G.T.: Adaptive FRP Structures For Exterior Applications. Advanced Materials Letters. 10, 913–918 (2019).
https://doi.org/10.5185/amlett.2019.0029.
Abstract
Regarding modern, daylight-flooded buildings with large window façades, appropriate shading systems to improve the energy consumption of climate controlling systems are becoming more relevant. Building envelopes contribute largely to the temperature control and should be at best installed on the outside to prevent the interior from heating up. Preferably, those systems work with minimum maintenance and maximum robustness, covering as much of the window area as possible. Previous shading systems were mostly based on rigid-body mechanisms using error-prone joints. Components, whose movability is achieved by a local compliance of the material, offer a way to avoid the usage of mechanical joints. Within this paper, a new fiber-reinforced plastic (FRP) façade shading demonstrator called “Flexafold” is presented. Its opening and closing movement are controlled by pneumatic cushions which are integrated directly into the laminate set-up. The Flexafold shows thereby the possibility of producing self‑supporting, adaptive FRP components whose actuators are integrated into the component and thus protected in exterior applications. The functional principles and components of Flexafold, e.g. the locally compliant FRP material, the folding pattern and the integrated actuator system, are explained within this paper. Furthermore, a comparison to existing adaptive façade shading systems “flectofin®” and “Flectofold” is given.BibTeX
Bunk, K., Jonas, F.A., Born, L., Hesse, L., Möhl, C., Gresser, G.T., Knippers, J., Speck, T., Masselter, T.: From plant branchings to technical support structures. In: Knippers, J., Schmid, U., and Speck, T. (eds.) Biomimetics for Architecture: Learning from Nature. pp. 144–152. De Gruyter, Berlin, Boston (2019).
https://doi.org/10.1515/9783035617917-019.
Abstract
Bridges and roofs are often supported by branched steel columns. Their production is usually expensive and consumes a great deal of energy. In nature, plants manage to form similarly strong and frequently even more complex branch systems through natural growth processes. They can effortlessly withstand mechanical loads, such as their own weight, wind pressure, snow load, or the heavy weight of fruit. In order to find out about the success strategies of ramified trees and shrubs and to learn from them for architecture, we need more than a detailed look at the form of ramification and inside the plants. We also need computer models and new materials and methods for the production of branched support structures in building construction to succeed in transferring the biological concepts to technology.BibTeX
Jonas, F., Knippers, J., Gresser, T., Born, L., Milwich, M.: DE 10 2017 008 661 A1 - Faserverbundstruktur, Verzweigungsknoten zum Gebäudebau sowie Verfahren zur Herstellung des Verzweigungsknotens zum Gebäudebau, (2019).
BibTeX
Jonas, F., Knippers, J., Gresser, G., Born, L., Milwich, M.: EP 3 460 114 A2 - FASERVERBUNDSTRUKTUR, VERZWEIGUNGSKNOTEN ZUM GEBÄUDEBAU SOWIE VERFAHREN ZUR HERSTELLUNG DES VERZWEIGUNGSKNOTENS ZUM GEBÄUDEBAU, (2019).
BibTeX
Kovaleva, D., Gericke, O., Wulle, F., Mindermann, P., Sobek, W., Verl, A., Gresser, G.T.: Rosenstein Pavilion: a lightweight concrete shell based on principles of biological structures. In: Knippers, J., Schmid, U., and Speck, T. (eds.) Biomimetics for Architecture: Learning from Nature. pp. 92–101. De Gruyter, Berlin, Boston (2019).
https://doi.org/10.1515/9783035617917-012.
Abstract
Natural structural systems that have developed over millions of years illustrate how large loads can be absorbed with very little material. This is achieved by adapting the structural properties to a predominant load profile. If we succeeded in transferring these principles to structures created by people, it would be possible to significantly reduce the consumption of resources in the construction industry. As a contribution to this, the Rosenstein Pavilion was developed based on bio-inspired optimization strategies in order to demonstrate the potential of resource-efficient building.BibTeX
Mader, A., Born, L., Gresser, T., Knippers, J., Milwich, M., Schieber, G., Müller, L., Körner, A.: DE 10 2018 103 178 A1 - Bauteil mit integrierter Aktuatorik, (2019).
BibTeX
Mader, A., Born, L., Gresser, T., Knippers, J., Milwich, M., Schieber, G., Müller, L., Körner, A.: EP 3 524 826 A1 - COMPONENT HAVING AN INTEGRATED ACTUATOR SYSTEM, (2019).
BibTeX
Mader, A., Born, L., Körner, A., Schieber, G., Masset, P.-A., Milwich, M., Gresser, G.T., Knippers, J.: Bio-inspired integrated pneumatic actuation for compliant fiber-reinforced plastics. Composite Structures. (2019).
https://doi.org/10.1016/j.compstruct.2019.111558.
Abstract
Compliant mechanisms of fiber-reinforced plastic (FRP) have been developed to reduce the mechanical complexity of kinetic systems. In a further step, pneumatic actuation was integrated into the set-up of the FRP, offering lightweight, slender, and inconspicuous actuation. Inflation of an integrated cushion causes rotation through the asymmetric material lay-up. Inspiration from the ultrastructure of pressurized veins in arthropod wings has led to the development of a thin layer of elastomer surrounding this pneumatic cushion to avoid delamination. T-peel tests revealed that the elastomer forms a higher adhesion to itself than to glass-fiber-reinforced plastic (GFRP) layers with an epoxy matrix. The angle-pressure relationship for specific GFRP samples with a defined compliant hinge zone was investigated physically and numerically, showing good consistency between the two. Further, a mathematical model, taking into account the bending stiffness of the cushion-surrounding FRP layers, was developed, and a parametric study was conducted on the actuation angles.BibTeX
Mindermann, P., Gresser, G.T., Milwich, M.: DE102019127568A1 - Verfahren und Werkzeuganordnung zum Herstellen einer Faser-Matrix-Verbund-Profil-Struktur und Faser-Matrix-Verbund-Profil-Struktur, (2019).
BibTeX
Saffarian, S., Born, L., Körner, A., Mader, A., Westermeier, A.S., Poppinga, S., Milwich, M., Gresser, G.T., Speck, T., Knippers, J.: From Pure Research To Biomimetic Products: The Flectofold Facade Shading Device. In: Knippers, J., Schmid, U., and Speck, T. (eds.) Biomimetics for Architecture: Learning from Nature. pp. 42–51. De Gruyter, Berlin, Boston (2019).
https://doi.org/10.1515/9783035617917-007.
Abstract
Biology can provide exciting ideas for the development or improvement of technical products. As a rule, the underlying principles are first investigated using a feasibility demonstrator, which does not represent a finished technical product but nevertheless, on the whole, is intended to “function” like the finished product. However, there is a long way to go from this first prototype to a product that is ready to use or to a convincing building method. In this process, numerous ideas that at first seem interesting and promising have to be abandoned. Many aspects must be investigated in parallel, and plausible solutions need to be found, not only in terms of reliable and durable functionality, but also in terms of commercial viability and resource-efficient manufacture. In addition, it is important that an innovative product is accepted in the market. In the case of architecture, this means-above all- that the product is esthetically appealing, because without that aspect, there will not be much interest even if the product functions well.BibTeX
Westermeier, A., Poppinga, S., Körner, A., Born, L., Sachse, R., Saffarian, S., Knippers, J., Bischoff, M., Gresser, G.T., Speck, T.: No Joint Ailments: How Plants Move And Inspire Technology. In: Knippers, J., Schmid, U., and Speck, T. (eds.) Biomimetics for Architecture: Learning from Nature. pp. 32–41. De Gruyter, Berlin, Boston (2019).
https://doi.org/10.1515/9783035617917-006.
Abstract
Plants have neither muscles nor “classic” local joints-and yet they can move. In the course of evolution, efficient movement mechanisms and esthetic movement forms have developed. Architects and engineers, in cooperation with biomechanists, are benefiting from this botanical “offering” and drawing inspiration for the development of new types of facade shading systems for modern buildings.BibTeX
Wulle, F., Kovaleva, D., Mindermann, P., Christof, H., Wurst, K.-H., Lechler, A., Verl, A., Sobek, W., Haase, W., Gresser, G.T.: Nature As Source Of Ideas For Modern Manufacturing Methods. In: Knippers, J., Schmid, U., and Speck, T. (eds.) Biomimetics for Architecture: Learning from Nature. pp. 84–91. De Gruyter, Berlin, Boston (2019).
https://doi.org/10.1515/9783035617917-011.
Abstract
Nature creates efficient, complex structures using the smallest possible amount of material. The construction principles employed and the intelligent use of materials regarding their specific properties can be transferred to modern production methods. The objective is to produce functional low-weight building components that consume as few resources as possible. In this chapter we show how this bionic transfer takes place by continuing the development of production methods, such as fiber technology (pultrusion, fiber deposition), 3D printing, the manufacture of concrete components, and a combination of these three methods.BibTeX